设为首页 - 加入收藏
您的当前位置:主页 > 教育科技 > 科普 > 正文

改变这个数,就改变了宇宙

来源:《科学之谜》 编辑:未知 时间:2019-10-07

一个关乎宇宙和生命的常数

物理学中有一个著名的常数,来自自然界中三个最基本的物理量——光速c、电子电荷e和普朗克常数h——的组合,如果计算hc/2πe2,你就会发现三个常量的单位恰好抵消,只剩下一个纯数字:137.03599913。换句话说,如果瓦肯星(《星球大战》系列中一个存在智慧生命的外星)上的科学家使用瓦肯星的单位计算这个量,他们仍会得到137.03599913。因此,这个奇妙的数字就被看作是自然界的普适常数。

这个数是如此重要,以至于有它自己的名字和符号。出于历史原因,人们使用了它的倒数:2πe2/hc= 1/137.03599913=0.00729735,称其为“精细结构常数”,并用希腊字母α来表示。

你知道这个数有多重要吗?可以这么说,它改变了,整个宇宙也就改变了。如果让它变大,质子之间的互相排斥就会变得强烈,它们呆在同一个原子核里就变得困难起来。这样,元素周期表中稳定的元素就要减少。当α大到超过0.1时,恒星内部的核聚变就“停工”了,不能再制造碳,而碳恰恰是生命赖以存在的元素。让α变小,分子之间的化学键只要温度稍低一点就断裂,许多对于生命活动至关重要的化学反应都得改变。到那时,所有的生物都将面临毁灭。

此外,α也与宇宙的一个深奥谜团有关。20世纪30年代,英国物理学家狄拉克注意到,由电子电荷e、电子质量m、质子质量M和万有引力常数G组成的无单位常数e2/GmM的数值是1040,而以原子尺度为单位的宇宙半径也是1040。此外,还有其他一些无单位的大数。它们之间也有着简单的关系。如宇宙中的粒子数约1080,宇宙膨胀到极大时的半径与基本粒子的大小之比值约1040,基本粒子大小与普朗克长度之比值约1020,宇宙中的光子数与重子数之比约1010……等等。狄拉克认为这一事实不是偶然的巧合,而是反映了宇宙的内在联系,并称之为“大数假设”。

所以,这些大数和像α那样的常数到底是从哪里来的,这是物理学家很关心的问题。

自然界的常数未必恒久不变

物理学家们还没来得及搞清楚“上帝之手”是如何写下了α=1/137.03599913这个数字的,现在它的奥秘又进一步加深了。有迹象表明,这个数可能不像我们原先设想的是一个常数,它会随着时间和空间而发生微妙的变化。当然,这一现象目前还存在争议。如果得到证实,那将对物理学产生深远的影响。

其实,自然界中的常数——包括光速、基本粒子质量等这些有单位的常数——可能并不是恒常不变的。这一想法由来已久,开创者还是狄拉克。1937年,当爱丁顿还在玩各种数学游戏,要从理论上推导出各种常数数值的时候,狄拉克就嘲笑他:“您这样瞎折腾干嘛?它们虽然现在看起来似乎是常数,但我们怎么能确定它们在宇宙的时间和空间尺度上没有变化呢?”

狄拉克的观点后来又得到弦理论的支持。超弦理论提出,现实的空间可能不只有3个维度,还有其余9或10个维度。只是其他维度非常微小,蜷曲起来不让我们看到而已,我们能看到的,只是大的那三个维度。为了理解这一点,你可以想象一个毛线球,你从很远的地方看,很可能只看到一个点,长宽高三个维度都隐而不见了。当你移近看,这些维度才“展开”来,让你知道原来它是三维物体。要是再移近,你会发现事情变得更复杂了:毛线球不像乒乓球是一个简单的球,它是由一根三维的长毛线卷成的,而这根毛线自身又是毛茸茸的,绝不像一条光滑的尼龙绳。这些细节,在你从远处看时,似乎都“蜷曲”、隐藏起来了。弦理论中的维度“蜷曲”也就是这个意思。

如果现实空间有着更高的维度,我们这个三维世界不过是它的投影,那么自然常数“恒常不变”这个事实就只能适用于高维空间,而不适用于低维空间——因为低维空间并不代表真实的现实。

这个道理也是显然的。不妨拿光速来说。我们说光在三维空间中传播速度是不变的。但是,从生活在更低维度世界的生物看来,它们可不认同这一点。举个例子。在二维平面有一个正三角形ABC。顶点A在左边,C在右边,B在中间。从A同时向C、B点各射一束光。它们将同时到达C、B点。现在,把正三角形ABC投影到AC这条线上,成了AB*C,假如AC线上的一维世界里生活着一个生物,在它看来,光同时到达B*点和C点,但显然AC比AB*长,于是它就得出结论:光速不是不变的,距离越长,光跑得越快。

但如果物理學常数会发生变化,这又意味着什么呢?意味着物理学规律也要变化了。“规律”的原意是指不会随着时间和地点而改变的东西。如果规律也会变化,那还算什么规律!那整个宇宙就没有任何规律可言了——科学家以探索自然规律为使命,他们的饭碗就要砸了。这可是很严重的事情。尤其,我们前面已经提到,对于当前的宇宙,α值的变化可谓牵一发而动全身。

不过幸好,可以让我们暂时松口气的是,长时间的跟踪测量表明,至少在地球上,α的值一直保持恒定(要知道,我们对它的测量,精度已提高到百亿分之几)。

不过,对物理学家来说,这个问题依然悬而未决。因为狄拉克的猜测是,在宇宙的时间和空间尺度上,自然常数可能会发生变化。但正可谓“夏虫不可语于冰,井蛙不可语于海”,人类的历史比起宇宙的年龄,比白驹过隙还短暂;此外,我们也像井蛙一样,没到过宇宙中其他遥远的地方进行测量。所以,在地球上测量是恒常不变的东西,丝毫不能说明在宇宙的年龄和范围内依然是恒常不变的。

终于发现常数在变化啦!

很多物理学家在研究自然常数变不变的问题。澳大利亚物理学家约翰·韦伯就是其中之一。从1996年起,他就开始从事研究α会不会发生变化这项工作了。他认为,我们最强大的望远镜所收集到的星光或许能解决这一问题。

其中一些星光在宇宙空间已经传播了很长时间。比如,位于夏威夷莫纳基亚山上的凯克望远镜,可以捕捉到大约120亿年前由极其明亮的星系核或类星体发出的光。某些特定波长的光波在到达地球的旅途中,会被星际空间的气体云吸收,因此在光谱上留下一条条像条形码似的暗线。因为暗线的产生涉及电子和原子核之间的相互作用,而这个相互作用的强弱又涉及α的数值。所以,α数值的任何变化都可以在含有暗线的光谱中体现出来。比如,α数值变化,这些“条形码”就整体往左或右移动,等等。

网友评论:

Copyright © 2017-2019 就爱文摘网

Top